Escherichia coli autoinducer-2 uptake network does not display hysteretic behavior but AI-2 synthesis rate controls transient bifurcation
نویسندگان
چکیده
Analysis of different architectures of quorum sensing networks has been the center of attention in recent times. The approach employs mathematical models to uncover the factors behind the dynamics. Quorum sensing networks mostly display autoregulation such as Pseudomonas aeruginosa and Vibrio cholerae. However, Escherichia coli autoinducer-2 (AI-2) synthesis does not display autoinduction (i.e. autoregulation). This and other features have raised questions about the actual function of AI-2 inside the cell. In this paper we propose a model for lsr operon regulation which explains or at least is consistent with AI-2 uptake in E. coli. The model was employed to determine the main factors that control the concentration of the signal and the uptake activation. We investigated deterministic and stochastic variants of the network model and we found no states that could lead to the typical bistability in quorum sensing systems. However, stochastic simulations predict a transient bifurcation (positively regulated by AI-2 synthesis) that could provide some advantage in adapting to new environments. LsrR inactivation was found to play a crucial role in the uptake activation compared to AI-2 synthesis, lsr transcription and AI-2 excretion. Our hypothesis is that positive regulation of the level of expression is the main factor in understanding the function of the lsr operon. This is in contrast to the conventionally held belief that the main factor is the onset of activation.
منابع مشابه
Cyclic AMP (cAMP) and cAMP receptor protein influence both synthesis and uptake of extracellular autoinducer 2 in Escherichia coli.
Bacterial autoinducer 2 (AI-2) is proposed to be an interspecies mediator of cell-cell communication that enables cells to operate at the multicellular level. Many environmental stimuli have been shown to affect the extracellular AI-2 levels, carbon sources being among the most important. In this report, we show that both AI-2 synthesis and uptake in Escherichia coli are subject to catabolite r...
متن کاملABSTRACT Title of dissertation: AUTOINDUCER-2 (AI-2) MEDIATED QUORUM SENSING IN ESCHERICHIA COLI
Title of dissertation: AUTOINDUCER-2 (AI-2) MEDIATED QUORUM SENSING IN ESCHERICHIA COLI Liang Wang, Doctor of Philosophy, 2004 Dissertation directed by: Professor William E. Bentley, Department of Chemical Engineering & Professor Steven W. Hutcheson, Department of Cell Biology and Molecular Genetics Bacteria have evolved complex genetic circuits to regulate their physiological activities and be...
متن کاملQuorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production.
In bacteria, the regulation of gene expression in response to changes in cell density is called quorum sensing. Quorum-sensing bacteria produce, release, and respond to hormone-like molecules (autoinducers) that accumulate in the external environment as the cell population grows. In the marine bacterium Vibrio harveyi two parallel quorum-sensing systems exist, and each is composed of a sensor-a...
متن کاملQuorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture.
The regulatory network for the uptake of Escherichia coli autoinducer 2 (AI-2) is comprised of a transporter complex, LsrABCD; its repressor, LsrR; and a cognate signal kinase, LsrK. This network is an integral part of the AI-2 quorum-sensing (QS) system. Because LsrR and LsrK directly regulate AI-2 uptake, we hypothesized that they might play a wider role in regulating other QS-related cellula...
متن کاملInhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone.
The quorum-sensing disrupter (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone (furanone) of the alga Delisea pulchra was found to inhibit the swarming motility of Escherichia coli completely at 13 microg cm-2 (also at 20 microg ml-1) but did not inhibit its growth rate at 13-52 microg cm-2 or from 20 to 100 microg ml-1. Swimming was not inhibited by the furanone at 20-40 microg ml-1. In a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bio Systems
دوره 99 1 شماره
صفحات -
تاریخ انتشار 2010